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Abstract. The rheological Persoz's gephyroidal model, made out of some elementary rheo-
logical models (dry friction element and linear spring) can be covered by the existence and
unigueness theory for maximal monotone operators. Moreover, classical results of numerical
analysis allow to use a numerical implicit Euler scheme, with order of convergence one. Some
numerical simulations are presented.
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1 Introduction

In previous works [1, 2, 3, 4, 5, 6] dynamical behaviours of mechanical systems involving
friction have been studied. Associations of springs, dashpots, Saint-Venant (also called Maxwell
elements) in parallel or in series have been investigated. In the book [7] Persoz introduced
similar nonlinear models for quasi-static behaviours. He denoted models M (for Maxwell) or K
(for Kelvin). Finally, he distinguished two classes of associations of such elements:

o the first one (involving M or K) can be modelled by parallel or series associations: It has
been called mixed models,

o the second one has been called general models or gephyroid models.

Among these latter ones, Persoz proposed a very simple —especially significant and clearly non-
mixed — gephyroid model of quasi-static behaviour.

This work is based on [8]. Here we examine this model in general. The paper is organised
as follows: in Section 2, model is described. In Section 3, numerical scheme is presented based
on mathematical results. In Section 4, we mainly propose numerical example of dynamical
behaviour.

2 Description of the model
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Figure 1: The studied model with forces f; and g; and displacement u;, v; and x.

We introduce the model of figure 1. The notation are analogous to those of [1] :

e Foralli € {0, ..., 3}, the displacement of spring with stiffness k; is denoted by u; and the
force exerted by this spring is denoted by f; ;
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e Forall i € {2,3}, the displacement of St-Venant elements with threshold «; is denoted
by v; and the force exerted by this element is denoted by g; ;

e Since the spring with stiffness £, and the St-Venant element with threshold «; are con-
nected in parallel, we do not introduce the displacement v, equal to u; and we denote by
g1 the force exerted by this St-Venant element;

e Let x be the abscissa of material point with mass m, and F' be the external force, applied
to this point.

We consider o the multivalued graph sign defined by

-1 if z <0,
o(z) =<1 if x>0, (1)
[—1,1] ifz=0.

The reader is refered to [9] for notions of multivalued operator. Following [1], the different
equations governing the model are given below. First, the geometrical connexion is written as:

Ug + V3 + U = T, (28.)
Vo + Uz + Up = T, (2b)
Ul + Uz = V3. (2C)

The constitutive laws of springs and St-Venant elements are:

Vi €40,...,3}, fi = —ku, (2d)
Vi € {2,3}, g; € —Q,;0 (’UZ), (29)
g1 € —o o (Ul) . (Zf)
The equilibrium leads to
g+ fi+g1=fs, (29)
g3+ f3 = Jfo, (2h)
g3+ 91+ 1= fo (2i)
mi = fo+ F. (2))

Let us introduce [ the inverse graph of o, defined by

0 if v €] — 0o, —1[U]1, +00],
{0} ifze]—1,1],
= 3
P@ =R ife= 1, 3)
We consider the convexe C of R? defined by
C = [—062,062] X [—063,043] X [—061,061], (4)
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and we consider the multivalued operator from R? to R? defined by
4% W W.
VYW = (w1, wa,ws) € R®,  A(W) =7 <—1) x 3 (—2) x 3 <—3) . (5)
() Qg g
By elimination of some unknows, we prove that (2) is equivalent to the system
T =1y,
y:#(F—éerEW), (6)
W+ KAW) 3 —koUy,
where K is the matrix defined by
ko + kQ ko —(ko + kQ)

K= ko ko + ks —(ko + k3) , (7
—(ko + lﬂz) —(lﬂo + kg) /ﬂo + /ﬁ + kQ + kg

and F and WV are given by

17 g2
U=|1,1], W=|g¢|, E=kU'K™" (8)
—1 [

System (6) can be written under the form

{ X(t) + MA(X (1)) 3 G(t, X (t)),ae. on]0,T], 9)

X(0) = Xo = (20, T0, w1,0, Wa,0, W30),
where M is a matrix, G a function from [0, 7] x R® to R, and A is a multivalued operator from
R® to R5.
3 Existence and uniquenessresults and numerical scheme

The matrix K defined by (7) is symmetric positive definite if and only if the numbers
(Ki)o<i<s Satisfy the following assumption

ko =0, Vie {1,2, 3}, ki > 0, (103.)
or

ko > 0 and at least two numbers among k1, k2 and k3 are non negative (10b)

and then, according to results proved in [1, 4, 3], the solution (6) (or of (9)) exists and is unique.
According to results proved in [1, 3, 4], we considere the numerical scheme

Pt = hyP + 2P, (11a)
h

Yt = - (F(t,) — 62 + EWP) + ¢P, (11b)

Wrtt = Proje -1 (W? — hkoy"U) , (11c)

where proj, ;-1 is the orthogonal projection on the convex C' defined by (4) for the norm on R3
defined by
VW e R?,  [[W] o = VWTK-IW. (12)

This numerical scheme converges to the solution of (6), with an error in O(h).

4



JErome oAsS IEN ana Llaude-menrt LAIVIARQUE

4 Applications
4.1 Quasistatic problems

In the quasistatic case, the mass m can be equal to zero. This case can be treated by the
proposed method (existence, uniqueness, numerical scheme). The difference is that the problem
is expressed in R* instead in R, as (6).

4.2 Numerical smulationsfor dynamical case

Parameters «; and k; and initial conditions are defined by

Vie{1,2,3}, o =1, (13a)
Vie {0,1,2,3}, k;=1, (13b)
Vi € {1, 2, 3}, gi0 = O, (13C)
and we choose
Ty = O, To = O, (143,)
m =1, (14b)
T =280, h=10"2 (14c)
The imposed force is defined by
F(t) = 200sin(6t). (14d)
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Figure 2: The graphs (¢, g;(t)) fort € [t;,t¢] and j € {1, 2, 3}.

We plot the graphs (¢, g;(t)) for t € [t;,t¢] and j € {1,2,3} in Fig. 2. We can observe the
specificity of the gephyroidal studied model. Indeed, in Fig. 2 we can see opposite behaviours
of functions g1, g» VS g3. AS g and gz reach their maximum a», and as, then g; leaves its
minimum —«;. Reciprocally, on other intervals, as g, and g3 reach their minimum —a, and
—ag, then g; leaves its maximum «;. From a mechanical point of view, is means that there
exist some intervals where dry friction elements 2 and 3 slip in a direction, whereas the dry
friction element 1 sticks still in the opposite direction.
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5 Conclusion

In this paper, we investigated mainly a simple example of gephyroid model. Wee can see
that the dynamical behaviour of such a model is different from a classical mixed model since
displacements can exhibit a non classical behaviour (traction when solicitation corresponds to
compression e.g.). Mathematical, numerical and main physical properties have been presented,;
the latter ones are coherent with [7].
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