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Introduction

I Applications:
♣ soil-structure coupling
♣ dynamical devices, elastomer blocks (cars, trucks)
♣ etc.

I Modelling
♣ using non smooth elements: dry friction

I Identification
♣ theoretically
♣ from discrete experimental data
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Assembling simple elements
Simple elements: springs, dashpots, dry friction elements
(St-Venant elements).
Classical constitutive laws: example

Mass m, external force F

f: force exerted between two boundaries of simple elements
x = u + v + w

f = ku f ∈ −ασ(v̇) f = −cẇ

σ graph of sign function: σ(0) = [−1, 1]



Model: 
mẍ = F − ku

ku ∈ ασ(ẋ − u̇ − ku/c)

x(0) = x0, ẋ(0) = ẋ0, u(0) = u0.

Finally: 

ẋ = y , ẏ = (F − ku)/m,

η = α/k, u̇ + β(u/η) 3 y − ku/c ,

x(0) = x0, ẋ(0) = ẋ0, u(0) = u0 ∈ [−η, η].

β(z) =


∅ if z ∈]−∞,−1[∪]1,+∞[,

{0} if z ∈]− 1, 1[,

]−∞, 0] if z = −1,

[0,+∞[ if z = 1,



σ and β : inverse graphs.

σ = β−1.

According to Brézis 1973, these graphs (or operators) are maximal
monotone (generalized non decreasing functions).{

Monotone: (σ(z1)− σ(z2))(z1 − z2) ≥ 0,

Maximal in the sense of monotone graphs...



Different combinations ...more or less canonical ...



ẋ = y , ẏ = (F − k0x − ku)/m,

η = α/k, u̇ + β(u/η) 3 y ,

x(0) = x0, y(0) = ẋ0, u(0) = u0 ∈ [−η, η].

k0 =
K2K3

K2 + K3
, k =

K1K
2
3

(K1 + K2 + K3)(K2 + K3)
,

α = A
K3

K2 + K3
,



We study many combinations built with Pi (parallel) or Si (series)
elements:

...with 1 degree of freedom or n degrees of freedom.



e.g. Si elements in parallel ...

Generalized Prandtl model with n Si elements and one spring...
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Mathematical frame

All the previous combinations have the same kind of models.

∀t ∈ [0,T ],∀X1,X2 inRp, ‖G (t,X1)− G (t,X2)‖ ≤ ω‖X1 − X2‖
∀Y ∈ Rp,G (.,Y ) ∈ L∞(0,T ,Rp),

M symmetric, positive definite,

φ is convex proper and lower semicontinuous,{
Ẋ (t) + M∂φ(X (t)) 3 G (t,X (t)) a.e. on ]0,T [,

X (0) = ξ.

∂φ subdifferential of φ. If < ., . > scalar product in Rp,

z ∈ ∂φ(Z ) ⇐⇒ ∀h ∈ Rp, φ(Z + h)− φ(Z ) ≥< z , h > .

σ = ∂|.|, β = ∂ψ[−1,1],



♣ Existence and uniqueness - Example of result:

Let us give G , ω verifying previous assumptions.

Proposition:

For all ξ ∈ D(∂φ), there exists a unique function
X ∈ W 1,1(0,T ,Rp) such that{

Ẋ (t) + M∂φ(X (t)) 3 G (t,X (t)) a.e. on ]0,T [,

X (0) = ξ.

Remark: D(∂φ) is domain of ∂φ (∂φ(z) 6= ∅).
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Numerical scheme
Let us consider A maximal monotone operator, f Lipschitz
continuous and problem:{

u̇(t) + A(u(t)) 3 f (t, u(t))

u(0) = u0.

♣ Numerical scheme: implicit Euler

♣ Convergence to the exact solution

♣ Non event-driven scheme

Let N be an integer. h = T/N. Let Up solution of the numerical
scheme{

∀p ∈ {0, . . . ,N − 1}, Up+1−Up

h + A(Up+1) 3 f (ph,Up)

U0 = u0

Indeed:{
∀p ∈ {0, . . . ,N − 1},Up+1 = (I + hA)−1(hf (tp,U

p) + Up)

U0 = u0



♣ From Up to uh linear approximation

♣ Convergence h −→ 0,

♣ Proposition

Order 1/2 for general maximal monotone graph. Under usual
assumptions, there exists C such that for all h small enough,{

∀t ∈ [0,T ], | u(t)− uh(t) |≤ C
√

h.

Order 1 if A is sub-differential of potential. Under usual
assumptions, there exists C such that for all h small enough,{

∀t ∈ [0,T ], | u(t)− uh(t) |≤ C | h | .
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Example of numerical results

♣ Under external solicitation e.g. periodic: Hysteresis cycles.

Example of generalized Prandtl model: k0 = 0, n = 5, ki = 1,
ηi = i , u0,i = 0, F (t) = 10 cos(0.5t).



♣ From discrete data of half of loading curve of hysteresis cycles:
identification.

Finding variations of smoothness (slopes) and abscissa of these
changes permit identification.

Wavelet analysis to localize smoothness changes and to find slopes
from discrete data..

Slopes pj and abscissa dj

known...

∀j ∈ {1, . . . , 5 + 1},

pj = k0 +
5∑

l=j

kl ,

∀i ∈ {1, . . . , 5},
di = 2ηi .



Other models

♣ Models with delay{
u̇(t) + A(u(t)) + B(t, u(t)) + G (u(t − τ)) 3 0a.e. on ]0,T [,

∀t ∈ [−τ, 0], u(t) = z(t).

A maximal monotone operator, B,G Lipschitz continuous...

♣ Models with stochastic external solicitation

♣ Models with infinite number of Si elements (continuous internal
variable)



♣ Deterministic:

BASTIEN J., SCHATZMAN M., & LAMARQUE C.-H. Study of
some rheological models with a finite number of degrees of
freedom European Journal of Mechanics A/Solids, vol. 19, n 2, pp.
277-307, 2000.

BASTIEN J., SCHATZMAN M., & LAMARQUE C.-H. Study of
an elastoplastic model with an infinite number of internal degrees
of freedom European Journal of Mechanics. A, Solids, vol. 21, n 2,
pp. 199-222, 2002.



♣ Deterministic + delay / memory:

LAMARQUE C.H., BASTIEN J., HOLLAND M.,Study of a
Maximal Monotone Model with a Delay Term, SIAM Journal on
Numerical Analysis, 41 (4), 2003, 1286-1300.

J. BASTIEN, C.-H. LAMARQUE, Maximal monotone model with
history term, Nonlinear Analysis, Vol. 63, Issues 5-7, 30
November-15 December 2005, e199-e207

C.-H. LAMARQUE, J. BASTIEN, M. HOLLAND, Maximal
monotone model with delay term of convolution, Mathematical
Problems in Engineering, Vol. 2005, Issue 4, 437-453.

J. BASTIEN, C.-H. LAMARQUE, Non smooth dynamics of
mechanical systems with history term, Nonlinear Dynamics,
(2007), 47 : 115-128.



♣ Stochastic:

BERNARDIN F. Multivalued Stochastic Differential Equations:
Convergence of a numerical scheme, Set-Valued Analysis, 11,
393-415, 2003.

F. BERNARDIN, M. SCHATZMAN, C.-H. LAMARQUE,
Second-order multivalued stochastic differential equations on
Riemannian manifolds, Proc. R. Soc. Lond. A (2004) 460, 1-28.

F. BERNARDIN, M. SCHATZMAN, C.-H. LAMARQUE, A
stochastic differential equation from friction mechanics, C.R. Acad.
Sci. Paris, Ser. I, 338, 837-842, 2004.



♣ Deterministic / Stochastic + locally Lipschitz continuous:

C.-H. LAMARQUE, F. BERNARDIN, J. BASTIEN, Study of a
rheological model with friction term and cubic term : deterministic
and stochastic case, European Journal of Mechanics A/Solids, 24
(2005) 572-592.

♣ Book:

AWREJCEWICZ J., & LAMARQUE C.-H. Bifurcation and chaos
in nonsmooth mechanical systems. Vol. Series A. New Jersey,
London, Singapore: World Scientific, 543 p., 2003



Summary

For every case, under assumptions and convenient theoretical frame

♣ Existence and uniqueness

♣ Numerical case of Euler implicit type. Convergence

♣ Identification

Remark 1: Problems with uniqueness for ”Coulomb friction” with
time dependant friction coefficient...

Remark 2: Persoz pointed out other kinds of models. Questions: Is
it possible to describe it using series or parallel configurations ?
Same mathematical frame ? ...
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Reference:

B. Persoz, La rhéologie, Recueil de travaux des sessions de
perfectionnement, INSA Lyon. Monographies du Centre
d’Actualisation Scientifique et Technique, Masson, Paris, 1969. (In
French).

Gephyroidal model: Persoz distinguishes ”analyzable” models (i.e.
models that can be splitted into branches settled either in series or
in parallel) and gephyroidal model (similar to ”bridge” = γεφυρα).

A simple example...



The rheological Persoz’s gephyroidal model
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We consider the model involving

1. four springs with stiffness k0, k1, k2 and k3

2. three St-Venant elements with threshold α1, α2 and α3

3. one material point of mass m



Again:

The rheological Persoz’s gephyroidal model, made out of some
elementary rheological models (dry friction element and linear
spring) can be covered by the existence and uniqueness theory for
maximal monotone operators. Moreover, classical results of
numerical analysis allow to use a numerical implicit Euler scheme,
with order of convergence one. Some numerical simulations are
presented.



Differential inclusion

The rheological Persoz’s gephyroidal model is governed by
differential inclusion of the form:{

Ẋ (t) + MA(X (t)) 3 G (t,X (t)), a.e. on ]0,T [,

X (0) = X0,

where

M is a invertible matrix

X is a function from [0,T ] in Rp

A is a maximal monotone graph on Rp

G a function from [0,T ]× Rp in Rp



Notations

We introduce the classical following notations :
I for i ∈ {0, ..., 3}, ki −→

I displacements ui

I forces fi
I for i ∈ {2, 3}, αi −→

I displacements vi

I forces gi

I k1 and α1 −→
I displacements v1 = u1

I forces g1

I Let x be the abscissa of material point with mass m, and F
be the external force, applied to this point.



Matrices in the model are

M =

 1 0 0

0 1 0

0 0 K

 ,X = (x , ẋ , g2, g3, g1)
T .

K =

 k0 + k2 k0 −(k0 + k2)

k0 k0 + k3 −(k0 + k3)

−(k0 + k2) −(k0 + k3) k0 + k1 + k2 + k3


after eliminating all the other unknowns. Let us define convex set :

C = R× R× [−α2, α2]× [−α3, α3]× [−α1, α1]



The differential inclusion governing the model

After computation, we obtain

Ẋ (t) + M∂ψC(X (t)) 3 G
(
t,X (t)

)
,

where

X is a function from [0,T ] in R5

M is a symmetric positive definite matrix (under
some assumptions)

∂ψC is the subdifferential of the indicatrix of a closed
convex of R5 for the scalar product defined by

< X ,Y >M = XTM−1Y ,

G is a regular function from [0,T ]× R5 in R5



Existence and uniqueness

Theorem (Existence and uniqueness)

Let (αi )1≤i≤3 be positive numbers, (ki )0≤i≤3 be positive numbers
satisfying

1. k0 = 0 and for all i ∈ {1, 2, 3}, ki > 0

2. or k0 > 0 and at least two numbers among k1, k2 and k3 are
non negative.

There is a unique solution X in W 1,∞(0,T ; R5) for the previous
differential inclusion.



Main idea of the proof ...
... is based on the following idea : if R5 is equipped with its
canonical scalar product, and with another scalar product

< X ,Y >M = XTM−1Y ,

where M is symmetric positive definite, then we can relate the
sub-differential ∂φ of φ relatively to the canonical scalar product
and the sub-differential ∂Mφ relatively to <,>M by

∂Mφ(X ) = M∂φ(X ).

We apply then results proved in :
J. Bastien and M. Schatzman, Numerical precision for differential
inclusions with uniqueness, M2AN. Mathematical Modelling and
Numerical Analysis, 36 (3), 2002, 427–460.
J. Bastien and M. Schatzman, Schéma numérique pour des
inclusions différentielles avec terme maximal monotone, Comptes
Rendus de l’Académie des Sciences. Série I. Mathématique, 330
(7), 2000, 611–615.



Numerical scheme

Theorem
Let N be an integer, h = T/N, hp = hp and X p defined by

X p+1 = projC,M−1 (X p + G (tp,X
p)) ,

where projC,M−1 is the orthogonal projection on the convex C for
the previously defined norm on R5. Denote Xh ∈ C 0

(
[0,T ]; R5

)
the linear interpolation at time tp = hp of the solution X p.

The numerical scheme is of first order.



Quasistatic problems

In the quasistatic case, the mass m can be equal to zero.
Existence, uniqueness and numerical scheme hold.



Numerical simulations : hysteresis cycle
After transient: cycle (hysteresis)



Numerical results : Specificity of gephyroidal model

Opposite variations of 2 gi versus the last one.
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Conclusions

♣ Modelling with non smooth simple Saint-Venant elements:
Another case Persoz’s model

♣ Non classical one

♣ Mathematically and numerically similar to various cases
previously examined

♣ Outlook:

- Generalization to ”bridges” assembling.

- Applications and identification.
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