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ABSTRACT. A planar polyarticulated system was modelised by points defining the joints and a last pointAp

linked to the last solid. The surface swept by the pointAp has its boundary defined by 3 kinds of particular
configurations. These boundaries are classically characterised in the litterature by symbolically vanishing some
determinants of jacobian of position functions. However, this method requires the resolution of important sets of
non linear equations.

So, the main purpose of this paper is to propose a pure geometrical resolution of the problem in a planar case,
in order to avoid these computations. In this aim, a simply geometrical interpretation of jacobian’s singularities
is used. This new formulation is applied to a human free moving arm for describing the workspace of its distal
extremity (i.e. the finger).

The relevance of this work in sport locomotion is important.Indeed, it allows to predict the degrees of freedom
recruted for a given mouvement as a function of the position of the target in a given workspace.

1. INTRODUCTION

This work correspond to a short version of submitted or accepted previous works [BLM06, BLM07].
In the aim to reach a target or realize an explosive movement like jumping, the degrees of freedom (Dof)

of the articular chain allow the recruitment of an infinity combination of these ones. Each combination of
Dof define a specific workspace. Thus, the knowledge of the position of the target to reach could allow to
predict the articulations engaged in the movement. For example, the displacement of the distal extremity of an
articular chain of segments, like a human arm, result from the transformation of rotational kinetic energy of the
involved joints in linear kinetic energy of the extremity (i.e. the finger). The space defined by this extremity for
a finite number of degree of freedom is so-called «workspace»of the finger. The boundary to the workspace
is called the «reach envelop» [Mol98].

Some works study the boundaries [HS05, HS02, HS00, CZM06, DM99, ECB06, MGM98], however,
as far as we know, no analytical solution of this descriptionas well as automatic method for describing the
boundaries are available in the literature.

In dimensionn ∈ {2, 3}, the workspace is considered as the range of a convex polytope of Rp (n ≤ p)
by a differentiable functionΦp. Herep is the number of independant parameters. In biomechanics orrobotics,
one of most known method for determining this boundary is to write that jacobian of functionΦp is necessary
singular on the boundaries [AMAYH97, AMY97, AMYS98, AMYZT04, DPH01]. To obtain the different
barriers defined by this singular jacobian ofΦp, equations are given by vanishing all determinants of jacobian.
This computation are done through symbolic calculation. Simplifications allow to improve the algorithms
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without resolving the problem of symbolic calculation. Indeed this method is very expensive in calculation
time, espacially when the number of degrees of freedom increase.

So, the main purpose of this paper is to propose an algorithm for describing the surface as joining arcs
of circles, determinable through simple calculation rules. In this aim, a simple geometrical interpretation of
jacobian’s singularities will be used forn = 2.

2. THEORITICAL BASIS AND PRESENTATION OF THE STUDIED PROBLEM

Let
(

O,~i,~j
)

be a reference frame,p an integer greater than or equal to 2,(li)1≤i≤p a p non negative

numbers and
(

θ+

i

)

1≤i≤p
and

(

θ−i
)

1≤i≤p
2p angles satisfying

∀i ∈ {1, ..., p}, −π < θ−i < θ+

i ≤ π. (1)
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FIGURE 1. The considered planar system.

We define the workspace as the set of pointsAp such as (see Fig. 1)

A0 = 0,
̂(

~j,
−−→
0A1

)

= θ1, (2a)

∀i ∈ {2, ..., p},
̂(−−−−−−→

Ai−2Ai−1,
−−−−→
Ai−1Ai

)

= θi, ∀i ∈ {1, ..., p}, Ai−1Ai = li, (2b)

with the constraints

∀i ∈ {1, ..., p}, θi ∈ [θ−i , θ+

i ]. (2c)

We consider functionΦp from domainF =

p
∏

i=1

[θ−i , θ+

i ] to R2 defined by

∀(θ1, ..., θp) ∈ F, Φp

(

θ1, ..., θp

)

= Ap. (3)

All the elementsx = (θ1, ..., θp) of domainF satisfy (2c). Thus, according to constrained optimization
technics, consider the following definition :



Definition 1. For allx = (θ1, ...., θp) ∈ F , for all i ∈ {1, ..., p}, thei-constraint (2c) is active ifθi ∈ {θ−i , θ+

i }

and inactive ifθi ∈]θ−i , θ+

i [, which means thatθi ∈ {θ−i , θ+

i } is saturated andθi ∈]θ−i , θ+

i [ is free.

We try to determine the topological boundary∂D = D \
◦

D of D = Φp(F ). SinceF is continuous andF

is compact,D is compact and∂D = D \
◦

D.
We refer to Appendix A, where some recalls about the jacobianof Φp on the boundary ofF are given.

Thus, results of the previous appendix will be applied withF , Φ = Φp, p ≥ 2 andn = 2.

3. BEHAVIOUR OF JACOBIAN OF APPLICATIONΦp ON THE BOUNDARY OF WORKSPACE

Refering to Definition 1, we will present a consequence of this lemma fundamental for the geometrical
interpretation of results of Appendix A.

Let x = (θ1, ..., θp) andy = Φp(x) such that the numberq of free components ofx belongs to{2, ...p}.
DenoteI = {i1, ..., iq} the set of integers1 ≤ i1 < i2 < ... < iq ≤ p corresponding to free components
of x andJ = {j1, ..., jp−q} the set of integers1 ≤ j1 < j2 < ... < jp−q ≤ p corresponding to saturated
components ofx. The setsI andJ define a partition of{1, ..., p} and we have, by using Proposition 7 with
n = 2 andΦ = Φp

Proposition 2. The elementy = Φp (θ1, ..., θp) belongs toSI ∪ SII if and only if

theq + 1 pointsAi1−1, Ai2−1, ...,Aiq−1 andAp are aligned. (4)

Remark1. In all this paper, it is assumed that, for all pair of integers(i, j), if i 6= j, thenAi andAj are
distinct, which holds in biomechanics and robotics.

Remark2. The geometrical of idea of Proposition 2 is very simple. It isproposed for three aligned points in
[MGM98], but it is not generalized. It permits to write the algorithm of description ofS = SI ∪ SII ∪ SIII ,
presented in Section 4 and in [BLM06, BLM07].

Thanks to proposition 2, we can prove that that pointy belongs toSI ∪ SII if and only if:

– each of saturated componentsθjk
for 1 ≤ k ≤ p − q is known;

– and each of free componentsθik for 2 ≤ k ≤ q is known according to the previous saturated compo-
nents;

– and only the free componentθi1 describes the interval]θ−i1, θ
+

i1
[.

4. GEOMETRICAL DEFINITION OF S = SI ∪ SII ∪ SIII AS FINITE UNION OF ARCS OF CIRCLES

Proposition 3. The partSIII is a finite union of arcs of circles and each of them is defined byΦp

(

θ1, ..., θi−1,

[θ−i , θ+

i ], θi+1, ..., θp

)

wherei describes{1, ..., p} and

∀j 6= i, θj ∈ {θ−j , θ+

j }. (5)

The new and original results of the paper are the two following:

Proposition 4. If for all j ∈ {2, ..., p}, θ−j θ+

j < 0 thenSI is the arc of circle defined byΦp

(

]θ−
1

, θ+

1
[, 0, 0, ...., 0

)

,
elseSI is empty.

In the second case,SI corresponds to the maximal extension of the arm. The pointAp describes a circle
of radius

∑p
i=1

li, which is the greatest possible distance to the origin .
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FIGURE 2. Simulations corresponding to cases 1 (a) and 2 (b); the discret swept volume is
ploted in yellow,SI is ploted in blue,SII is ploted in red andSIII is ploted in green.

Proposition 5. There exist an integerM ∈ N, m integers(pm)
1≤m≤M of {1, ..., p}M , M elements ofRp−1,

(

θm
1 , ..., θm

pm−1, θ
m
pm+1, ..., θ

m
p

)

1≤m≤M
and2m numbers{θ−m, θ+

m}
1≤m≤M (with θ−m < θ+

m) such thatSII is the
finite union of arcs of circles defined by

⋃

1≤m≤M

Φp

(

θm
1 , ..., θm

pm−1, ]θ
−
m, θ+

m[, θm
pm+1, ..., θ

m
p

)

. (6)

5. NUMERICAL SIMULATIONS

Now will be presented some numerical simulations with the shape ofS = SI ∪ SII ∪ SIII .

cases p Segment length / body height
(

θ−i
)

1≤i≤p
(◦)

(

θ+

i

)

1≤i≤p
(◦) figures

1 2 0.146, 0.108 -130, -10 0, 25 2(a)
2 3 0.186, 0.146 , 0.108 -60, -130, -10 120, 0, 25 2(b)

TABLE 1. For simulation, one subject of 1.80 m height is considered. Lengths of the upper
limb were determided from anthropometric data [Win90]. Thus, segment lengths are pre-
sented as percent of total body height (0.108, 0.146 and 0.186 for the hand, forearm and upper-
arm respectively). Angles correspond to minima and maxima of joints degrees of freedom of
human upper limb, i.e. shoulder abduction/adduction (−60◦/120◦), elbow flexion/extension
(−130◦/0◦), wrist abduction/adduction (−10◦/25◦).

(1) Case 1 corresponds to forearm and hand displacements;
(2) Case 2 corresponds to upperarm, forearm and hand displacements.

Each figure presents the computed arcs of circles, and, forp ≥ 2, the discret swept volume obtained by
ploting the setΦp(θ

m
1 , ..., θm

p ) where(θm
1 , ..., θm

p ) belongs to a finite set of[θ−
1

, θ+

1
]× [θ−

2
, θ+

2
]× ...× [θ−p , θ+

p ].
On Figures 2, the partSI is included on the boudary of the workpace, which is not the case forSII and

SIII . Indeed, the geometrical condition for describing the boundary is necessary but non sufficient. Thus, some



arcs of circles have to be remove, aimed to describe only the boundary of the workspace. Theses difficulties
are also pointed out by [AMAYH97, AMY97, AMYS98].

6. CONCLUSION

The part of the boundary is traditionally written under the formS = SI∪SII∪SIII . The partSII corresponds
to points for which only one of constraint is inactive. The parts SI andSIII corresponds to points for which at
least two constraints are inactive.

This paper shows that the resolution of the problem under jacobian formulation is not necessary. Indeed,
considering that all the points for which the constraints are inactive are aligned suffied to describe the workpace
boundaries.

Moreover, this geometrical formulation condition gives a phenomenological description of the boundary,
which locally corresponds to a position for which the considered joint is partially extended.

APPENDIX A. RECALLS ABOUT FUNDAMENTAL THEORETICAL RESULTS

The aim this appendix is to remain some theoretical fundamental lemmas, where it can find presentation
for example in [AMYZT04, AMAYH97, AMY97].

Let p andn be two integers satisfyingp ≥ n ≥ 1 andΦ a function fromRp to Rn, whose domain is a

compact setF . ConsiderD = Φ(F ) and∂D = D \
◦

D the boundary ofD.
Assuming thatΦ is of classC1 onF and thatF is the convex polytope ofRp defined by

F =

p
∏

i=1

[αi, βi], (7)

whereαi < βi.
The differential and the jacobian matrix ofΦ atx are identified i. e.:

∀(i, j) ∈ {1, ..., n} × {1, ..., p}, (dΦ(x))i,j =
∂φi

∂xj

(x). (8)

The fundamental following results are:

Lemma 6. Let x be an element ofF such thatΦ(x) belongs to∂D. Let q ∈ {0, ..., p} the number of free
components ofx. There are three exclusive cases:

(1) If q = p, then
rank

(

dΦ(x)
)

≤ n − 1. (9)

(2) If n ≤ q ≤ p − 1, denote bỹdΦ(x) the submatrix ofdΦ(x), where all the columns corresponding to
the saturated components ofx are removed. Then

rank
(

d̃Φ(x)
)

≤ n − 1. (10)

(3) If q ≤ n − 1, there is no condition on the jacobian.

Proposition 7. The three surfacesSI, SII andSIII of Rn, corresponding to the three exclusive cases of Lemma
6, are defined by:

Φ(x) ∈ SI ⇐⇒ q = p, (11a)

Φ(x) ∈ SII ⇐⇒ q ∈ {n, ..., p − 1}, (11b)

Φ(x) ∈ SIII ⇐⇒ q ≤ n − 1. (11c)



Then, the boundary∂D of D is included inS = SI ∪ SII ∪ SIII .

These results give a necessary but non sufficient condition for being on the boundary ofD.
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